Les Phases Na₄XO₄ (X = Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) et K_4XO_4 (X = Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb)

ROGER OLAZCUAGA, JEAN-MAURICE REAU, MICHEL DEVALETTE, GILLES LE FLEM, ET PAUL HAGENMULLER

Service de Chimie Minérale Structurale de l'Université de Bordeaux I, Associé au C.N.R.S., 351 Cours de la Libération, 33405 Talence, France

Received February 21, 1974

Les phases Na₄XO₄ (X = Si Ti, Cr, Mn, Co, Ge, Sn, Pb) et K₄XO₄ (X = Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb), qui cristallisent dans le système triclinique, sont isotypes. Les propriétés optiques et magnétiques ont été étudiées lorsque X est le chrome, le manganèse, ou le cobalt. Elles montrent que l'élément de transition occupe un site tétraédrique.

The isotypic Na_4XO_4 (X = Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) and K_4XO_4 (X = Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb) phases crystallize in the triclinic system. Optical and magnetic properties of the chromium, manganese, and cobalt compounds show that the transition element has a tetrahedral surrounding.

Les composés oxygénés ternaires de formule générale Na₄XO₄ (X = Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) ont fait l'objet de travaux divers, mais souvent incomplets. Ainsi, dès 1958 Scholder signalait-il l'existence de toutes ces phasessans toutefois préciser leurs caractères cristallographiques ni aucune de leurs propriétés physiques (1).

L'étude de Na₄SiO₄ fut reprise par Kautz, Müller, Schneider qui isolèrent un cristal de de symétrie triclinique avec les paramètres: a = 5.58 Å; b = 5.59 Å; c = 8.53 Å; $\alpha = 110.6^{\circ}$; $\beta = 84.1^{\circ}$, $\gamma = 112.6^{\circ}$ (2).

Lors de l'étude de problèmes de corrosion dans les réacteurs nucléaires, Barker et Wood, puis Lavielle, Kessler et Hatterer ont isolé Na₄CrO₄ (3, 4). Ces auteurs ont proposé une indexation du spectre Debye-Scherrer dans le système orthohombique avec les paramètres: a = 11.46 Å; b = 13.43 Å; c = 9.99 Å. Enfin, Claverie, Fouassier, et Hagenmuller ont confirmé l'existence de Na₄SnO₄ et Na₄PbO₄ (5).

Alors que les travaux relatifs aux composés du sodium étaient restés fragmentaires, une

275

étude systématique a été réalisée par Devalette et Hagenmuller sur les orthosels K_4XO_4 (X = Ti, Ge, Zr, Sn, Hf, Pb), dont ces auteurs one montré l'isotypie (6). Récemment, Tournoux a entrepris l'étude structurale sur K_4SnO_4 à partir d'un monocristal de symétrie triclinique et de paramètres: a = 6.51 Å; b = 6.52 Å; c = 9.68 Å; $\alpha = 108.00^\circ$; $\beta =$ 79.94° ; $\gamma = 113.12^\circ$ (7).

Dans le cadre d'une étude générale sur la stabilisation des degrès d'oxydation +IV et +V du chrome et du manganèse par le sodium ou le potassium, nous nous proposons de décrire ici la préparation, les caractères cristallographiques et quelques propriétés physiques des phases A_4XO_4 (A = Na, K; X = Cr, Mn). Ces résultats ainsi que ceux obtenus pour Na₄TiO₄, Na₄CoO₄, Na₄GeO₄ nous permettront de compléter les données relatives aux phases Na₄XO₄ et K₄XO₄.

I. Préparation

Na₄CrO₄ et K₄CrO₄ ont été isolés par action à 500°C pendant 15 hr de l'oxyde alcalin A₂O (A = Na, K) sur un mélange de

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

	Paramètres des Phases Na ₄ XO ₄									
	a(±0.02 Å)	b(±0.03 Å)	c(±0.02 Å)	α(±0.30°)	β (±0.30°)	γ (±0.30°)	V (Å ³)			
Na ₄ SiO ₄	5.56	8.38	6.18	98.32	123.49	98.56	228.42			
Na ₄ TiO ₄	5.77	8.64	6.46	98.64	124.10	98.58	252.76			
Na ₄ CrO ₄	5.71	8,60	6.38	98.21	123.38	99.13	248.32			
Na ₄ MnO ₄	5.72	8.54	6.34	97.90	123.86	99.24	243.80			
Na ₄ CoO ₄	5.72	8.59	6.38	97.68	123.71	99.43	247.78			
Na ₄ GeO ₄	5.72	8.57	6.35	98.30	124.19	98.87	244.18			
Na₄SпO₄	5.93	8.88	6.63	99.25	124.13	98.29	273.49			
Na ₄ PbO ₄	5.99	8.95	6.66	99.45	123.33	99.22	279.78			

TABLEAU I

chromate A_2CrO_4 et d'oxyde Cr_2O_3 selon la réaction:

$$5A_2O + A_2CrO_4 + Cr_2O_3 \rightarrow 3A_4CrO_4$$

(A = Na, K).

Le mélange de départ est broyé en boîte à gants ultrasèche, puis introduit dans un tube scellé d'or lui-même placé dans un tube de vycor scellé sous vide.

Ces composés peuvent également s'obtenir par réduction à 400°C du chromate A_2CrO_4 (A = Na, K) par le sodium ou le potassium métallique, suivie d'une distillation sous vide secondaire de l'excès de métal alcalin (à 350 et 320°C, respectivement, pour le sodium et le potassium). La réaction est la suivante:

 $A_2CrO_4 + 2A \rightarrow A_4CrO_4$ (A = Na, K).

 Na_4MnO_4 et K_4MnO_4 ont été préparés à 500°C par action en proportions stoechiométriques de l'oxyde alcalin sur MnO_2 :

$$2A_2O + MnO_2 \rightarrow A_4MnO_4$$
 (A = Na, K).

 Na_4TiO_4 et Na_4GeO_4 ont été obtenus en faisant réagir à 400°C Na_2O sur TiO_2 ou GeO_2 :

$$2Na_2O + XO_2 \rightarrow Na_4XO_4$$
 (X = Ti, Ge).

 Na_4CoO_4 résulte de l'action à 500°C de l'oxyde CoO sur un mélange de Na_2O et Na_2O_2 :

$$CoO + Na_2O + Na_2O_2 \rightarrow Na_4CoO_4.$$

 Na_4CrO_4 et K_4CrO_4 se présentent sous forme de poudres vert.-foncé, les phases,

homologues du manganèse sont légèrement plus claires. Na_4TiO_4 et Na_4GeO_4 sont des poudres blanches, Na_4CoO_4 a l'aspect d'une poudre noire à reflets violets. Toutes ces phases sont très hydroscopiques.

II. Etude Radiocristallographique

Toutes les phases Na_4XO_4 (X = Si, Cr, Mn, Co, Ge, Sn, Pb) donnent des solutions solides sans lacune de miscibilité avec Na_4TiO_4 de formule $Na_4Ti_xX_{1-x}O_4$. On peut en déduire qu'elles sont isotypes. Cette propriété nous a permis de les indexer dans le système triclinique à partir des valeurs données par Kautz, Müller, et Schneider pour l'orthosilicate Na_4SiO_4 (2). Les paramètres obtenus après réduction de Delaunay et affinement sont rassemblés au Tableau I. Le Tableau II donne les dépouillements des spectres Debye-Scherrer de Na_4CrO_4 et Na_4MnO_4 .

Une étude analogue a été effectuée pour les phases K_4XO_4 (X = Cr, Mn, Ge, Zr, Sn, Hf, Pb). Des solutions solides sans lacune de miscibilité de formule $K_4Ti_xX_{1-x}O_4$ ont été mises en évidence. Nous avons indexé toutes les phases K_4XO_4 dans le système triclinique en prenant pour base les valeurs des paramètres mesurés sur un monocristal de K_4SnO_4 par Tournoux (7). Les paramètres obtenus après réduction de Delaunay et affinement sont donnés au Tableau III. Les dépouillements de K_4CrO_4 et K_4MnO_4 sont précisés au Tableau IV.

La comparaison des deux séries de paramètres cristallins obtenus pour tous les

les phases Na_4XO_4 et K_4XO_4

TABLEAU II

D

TABLEAU II—continued

Depouillements des Spectres Debye-Scherrer de Na $_4$ CrO $_4$ et Na $_4$ MnO $_4$				Na₄CrO₄		Na₄MnO₄			
	Na ₄ 0	CrO ₄	Na ₄ N	InO4	h k i	d _{obsd} (Å)	d _{calcd} (Å)	$d_{\rm obsd}$ (Å)	d _{caicd} (Å)
h k i	d _{obsd} (Å)	d_{calcd} (Å)	d _{obsd} (Å)	d_{calcd} (Å)	{22I 04I	2.111	(2.111)	2 093	2.103
101	5.27	5.27	5.31	5.28	230		2.100	2.055	2.055
011	5.00	5.00	4.90	4.95	(040		(2.039	2.028	2.025
110	-	4.58	4.61	4.57	1103	2.036	2.036		2.017
111	4.52	4.52	4.47	4.51	(123		(1.992		(1.973
111	4.37	4.34	4.29	4.33	121	1.986	1.985	1.972	1.968
020	4.06	4.08	4.00	4.05	213		1.966	1.955	1.959
011	3.86	3.87	3.79	3.83	Ī41	1.929	1.931	1.923	1.920
(120	2.67	(3.60	3.62	3.58	223		1.904	1.898	1.894
1110	3.57	3.57	3.51	3.55	141		1.875	1.860	1.862
<u>1</u> 21	3.30	3.30	3.33	3.29	(042		(1.869	1.0.40	(1.850
(12Ī	2.16	(3.16	2.16	∫ 3.14	232		1.853	1.848	1.845
1102	3.10	l 3.16	3.10	3.14	(241	1.000	(1.825		1.819
112	3.10	3.10	3.07	3.08	211	1,826	1.823	1.810	1.808
∫ 021	7.02	(2.83	2 79	∫ 2.80	220	1.789	1.787	1.775	1.776
112	2.03	2.81	2.70	2.79	231		1.776	1.764	1.768
∫03Ī	2 72	∫ 2.74	2.60	∫ 2.69	(041	1 724	1.735	1 700	∫ 1.722
1030	2.75	2.72	2.09	l 2.70	231	1./34	1.733	1.722	1.719
∫120	267	∫ 2.6 8	2.68	2.67	051	1.699	1.698	1.681	1.684
012	2.07	2.66	2.62	2.63	332	1.669	1.667	1.665	1.667
20Ž	2.64	2.64		2.64	311	1.653	1.651		1.647
<u>2</u> 12	2.542	2.542	2.476	2.475	(142	1 (25	(1.638	1 617	(1.620
Ī31	2.465	2.461	2.445	2.449	1050	1.035	1.632	1.017	1.620
13Ī	2.371	2.375	2.360	2.360	(322	1 616	∫ 1.618		∫ 1.615
131	2.325	2.324	2.298	2.302	143	1.010	1.616	_	1.601
012		2.267	2.240	2.243	∫241	1 506	∫ 1.593	1 583	∫ 1.581
132	2.229	2.227	2.213	2.210	214	1.390	1.593	1.303	1.583
032	—	2.193	2.171	2.169	310	1,582	1.581	1.577	1.575
031	2.165	2.164		2.147					

TABLEAU III

Paramétres des Phases K₄XO₄

	a(±0.02 Å)	b(±0.03 Å)	c(±0.02 Å)	α (<u>+</u> 0.30°)	β (±0.30°)	γ (<u>+</u> 0.30°)	$V(Å^3)$
K₄TiO₄	6.40	9.66	7.03	103.87	122.97	95.27	340.56
K₄CrO₄	6.32	9.60	6.95	104.10	123.37	95.17	329.56
K₄MnO₄	6.30	9.55	6.90	103.98	123.00	95.03	325.36
K₄GeO₄	6.29	9.54	6.92	103.80	123.47	94.96	323.98
K₄ZrO₄	6.56	9.90	7.26	104.01	123.11	94.88	369.23
K₄SnO₄	6.50	9.85	7.18	104.25	123.42	94.81	358.40
K₄HfO₄	6.56	9.91	7.27	104.09	123.36	95.36	367.98
K ₄ PbO ₄	6.58	9.94	7.28	104.05	123.51	95.42	369.45

TABLEAU IV

Dépouillments des Spectres Debye-Scherrer de K_4CrO_4 et K_4MnO_4

	K₄C	CrO4	K₄MnO₄		
h k l	d _{obsd} (Å)	d _{caled} (Å)	d _{obsd} (Å)	d _{caled} (Å)	
001	5.47	5.45		5.43	
11Ī	4.98	5.00	_	4.98	
Ī11	4.72	4.73	4.65	4.70	
020		4.48	4.48	4.46	
02Ī	4.30	4.27	4.28	4.24	
∫110	2 07	∫ 3.98	—	3.98	
120	5.91	3.94		3.92	
12Ī		3.65	3.64	3.64	
$\{11\bar{2}$		(3.45	3 4 5	{ 3.42	
121		3.44	5.45	3.42	
102		3.36	3.30	3.34	
\int_{-1}^{111}		$(^{3.15})$	3.16	3.14	
{03Ī	3.13	3.12	3.08	3.10	
(201		(3.11	0.01	(3.10	
120		2.98	3.01	2.98	
{101	2.95	2.96	2.94	2.95	
(130)		(2.95		(2.93	
1012	2.90	2.91	2.89	2.09	
(202		(2.89	2 82	2.00	
211		(7.81	2.05	(2.02	
1022	2.79	2.81	2.78	2.79	
212		2 73	2 75	2.72	
$(13\bar{1})$		(2.73)	2.75	(2.71)	
712		2.71	2.70	2.69	
210	2 65	2.65	2.64	2.64	
320	2 530	2.532	2.520	2.522	
032	2.493	2.496	2.475	2,477	
22Ī	2.408	2,408	2.410	2.406	
041	2.380	2.385	2.372	2.373	
231	2.316	2.316	2.300	2.303	
2 30	2.270	2,269	2.254	2.256	
040	_	2.238	2.232	2.231	
141	2.188	2.190	2.180	2.176	
103		2.161	2.148	2.147	
14ī	_	2.131	2.120	2.126	
302	2.100	2.096	2,090	2.089	
312	2.072	2.073	2.066	2.064	
022		2.033	2.031	2.028	
[221	2 018	∫ 2.018	2.009	2.011	
1211	2.010	2.014		(2.009	
321		1.961	1.956	1.954	
241	1.943	1.946	1.931	1.936	
051	1.908	1.912	1.898	1.902	
(313	1.0/2	(1.910		(1.900	
311	1.865	1.864	—	1.803	

TABLEAU IV—continued

		K4CrO4	ŀ	K₄MnO₄		
h k l	$d_{\rm obsd}$ (Å)	d _{calcd} (Å)	d _{obsd} (Å)	d _{calcd} (Å)		
041		1.855	1.854	1.851		
052	1.816	1.818	1.810	1.806		
332	1.771	1.774	1.768	1.765		
15I	1.743	1.741	1.740	1.736		
214		1.734	1.721	1.721		
333	1.668	1.667	1.659	1.661		
(153		(1.642	4	(1.632		
233	1.640	1.639	1.630	1.631		
304	1.625	1.628	1.615	1.618		
061	1.589	1.588	1.579	1.581		

composés Na₄XO₄ et K₄XO₄ nous a amené à envisager une isotypie éventuelle entre ces deux familles L'étude a été effectuée lorsque X est le titane. La solution solide Na_{4(1-x)}-K_{4x}TiO₄ existe entoutes proportions ($0 \le x \le 1$).

En l'absence de toute information supplémentaire quant à la structure de ces composés on pouvait penser que l'ion X^{4+} se trouvait en site tétraédrique, le tétraèdre se déformant d'une manière progressive et importante lorsqu'on passait du silicium au plomb.

III. Propriétés Physiques

Nous avons effectué une étude optique et magnétique des phases contenant un ion de transition 3d.

A. Les Phases Na_4CrO_4 et K_4CrO_4

(a) Propriétés optiques. Les spectres de réflectance diffuse de Na₄CrO₄ et K₄CrO₄ ont été réalisés à température ambiante en collaboration avec Fouassier. Nous les avons comparés à la Fig. 1 avec celui de Ba₂CrO₄ de structure K₂SO₄ β . Ils sont très voisins et comportent tous trois une large bande allant de 9000 à 15 000 cm⁻¹. Ce résultat premet de confirmer la coordinence tétraédrique du chrome dans Na₄CrO₄ et K₄CrO₄.

(b) Propriétés magnétiques. Par mesure de susceptibilité magnétique de 4 à 500 K nous

FIG. 1. Spectre de réflectance diffuse des phases Na_4CrO_4 , K_4CrO_4 , et Ba_2CrO_4 .

FIG. 2. Variation thermique de l'inverse de la susceptibilité magnétique pour Na_4CrO_4 et Na_4MnO_4 .

FIG. 3. Variation thermique de l'inverse de la susceptibilité magnétique pour K_4CrO_4 et K_4 MnO₄.

avons pu vérifier le degré d'oxydation du chrome dans Na₄CrO₄ et K₄CrO₄. Les courbes $\chi_m^{-1} = f(T)$ caractérisent une loi de Curie-Weiss (Figs. 2 et 3). Les valeurs des constantes de Curie mesurées sont en bon accord avec celles calculées dans le cas de la seule contribution de spin (Tableau V).

B. Les Phases Na₄MnO₄ et K₄MnO₄

(a) Propriétés optiques. Les spectres de réflectance diffuse de Na_4MnO_4 et de K_4MnO_4 sont analogues également et comportent une large bande s'étendant de 12 000 à 16 000 cm⁻¹ (Fig. 4).

Le spectre dans le domaine visible de l'ion Mn^{4+} en site octaédrique a été étudié par Milstein dans Li₂MnO₃ (8). Il comporte une bande très peu intense à 14 500 cm⁻¹ due aux transitions interdites par spin ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$ et ${}^{4}A_{2g} \rightarrow {}^{2}T_{1g}$ et une bande intense à 21 000 cm⁻¹ correspondant au passage d'un électron sur le niveau d'énergie minimale de même multiplicité ${}^{4}T_{2g}$.

L'absence dans les spectres de Na_4MnO_4 et de K_4MnO_4 de cette dernière bande permet d'exclure l'hypothèse d'un environnement octaédrique de l'ion Mn^{4+} .

Etant donné la proximité de la position de la bande observée dans Na₄MnO₄ et

FIG. 4. Spectres de réflectance diffuse des phases Na_4MnO_4 , K_4MnO_4 , et Li_2MnO_3 .

Ccalcd	C_{mes}	$p_{calcd}(\mu_{\rm B})$	$p_{exp}(\mu_{\rm B})$	θ _p (K)
1 1	0.98 0.98	2.83 2.83	2.80 2.80	-10 -10
	C _{calcd} 1 1	Ccalcd Cmes 1 0.98 1 0.98	$\begin{array}{c c} C_{calcd} & C_{mes} & p_{calcd}(\mu_B) \\ \hline 1 & 0.98 & 2.83 \\ 1 & 0.98 & 2.83 \end{array}$	$\begin{array}{c c} C_{calcd} & C_{mes} & p_{calcd}(\mu_B) & p_{exp}(\mu_B) \\ \hline 1 & 0.98 & 2.83 & 2.80 \\ 1 & 0.98 & 2.83 & 2.80 \end{array}$

TABLEAU V

lère bande	MnO₄-	MnC	04 ²⁻ N	∕InO₄ ^{3−}	MnO ₄ ^{4–}
de charge	18 000 cm	12 000– 16 000 cm ⁻¹			
		TABLE	AU VII		
	Ccaled	C _{mes}	$p_{caled}(\mu_{\rm B})$	$p_{exp}(\mu_{\rm B})$	θ _p (K)
Na₄MnO₄ K₄MnO₄	1.875 1.875	1.90 1.93	3.87 3.87	3.90 3.93	-40 -100

TABLEAU VI

 K_4 MnO₄ avec celle du manganèse dans les composés oxygénés de degrés d'oxydation +VII, +VI, et +V (Tableau VI), on peut supposer raisonnablement que la bande observée est la première bande de transfert de charge pour un ion tétraédrique (9).

(b) Propriétés magnétiques. Les courbes de susceptibilité réciproque de Na₄MnO₄ et de K₄MnO₄ comportent une allure sensiblement différente de celles des composés homologues du chrome (Figs. 2 et 3). A basse température les courbes $\chi_m^{-1} = f(T)$ comportent un écart à la loi de Curie jusqu' à 100 K pour NaMnO₄ et 300 K pour K₄MnO₄. Toutefois, dans le domaine paramagnétique, les valeurs des constantes de Curie mesurées s'écartent peu de celles calculées dans l'hypothèse du blocage du moment orbital (Tableau VII).

Pour tenter d'expliquer la courbure observée à basse température nous nous sommes placés dans l'hypothèse où l'ion Mn^{4+} serait situé en site tétraédrique. Deux hypothèses peuvent alors être formulées : (a) évolution avec la température d'un couplage spin-orbite. (b) existence d'une configuration à spin faible e_g^3 à basse température.

(a) Couplage spin-orbite. Un ion d^3 en site tétraédrique ayant la configuration électronique $e_g^2 t_{2g}^1$ comporte un niveau fondamental 4T_1 . La dégénérescence de cc niveau peut être partiellement levée, les différences d'énergie résultant du couplage spin-orbite, celles-ci sont de la forme:

$$E_{LS} = \lambda < \mathbf{LS} > = [J(J+1) - L(L+1) - S(S+1)],$$

 λ étant le paramètre du couplage spin-orbite.

Le niveau ${}^{4}T_{1}$ éclate alors en trois sousniveaux correspondant à des valeurs de J égales à 1/2, 3/2, et, 5/2. On peut montrer que tous les éléments de matrice de l'opérateur moment orbital L dans l'état de symétrie T_{1} sont rigoureusement identiques à ceux de l'opérateur L dans les états P en multipliant celui-ci par le facteur -3/2 (10).

A partir de cette remarque nous pouvons calculer les énergies des sous-niveaux en fonction de λ (Fig. 5): $15\lambda/4$ pour J = 1/2, $6\lambda/4$ pour J = 3/2 et $-9\lambda/4$ pour J = 5/2.

A T=0 seul le niveau fondamental intervient. Il lui correspond une constante de Curie:

$$C_{5/2} = Ng^2 J J (J+1)\beta^2/3k = 0.39,$$

soit un moment effectif expérimental de 1.80 $\mu_{\rm B}$. Cette valeur est nettement inférieure

FIG. 5. Eclatement dû au couplage spin-orbite d'une configuration électronique d^3 en site tétraédrique (les chiffres entre parenthèses représentent la dégénérescence de chaque sous-niveau).

FIG. 6. Variation thermique de l'inverse de la susceptibilité magnétique pour Na₄CoO₄.

à celle correspondant à un moment orbital bloqué pour un état d^2 (2.83 μ_B). Elle devrait donc correspondre à une pente plus forte que celle observée à basse température pour Na₄CrO₄ et K₄CrO₄. Or nous observons un comportement exactement inverse. Cette hypothèse est donc à rejeter.

(b) Existence d'une configuration à spin faible. Dans cette hypothèse le taux maximal d'ions Mn^{IV} à spin faible présents dans Na₄MnO₄ et K₄MnO₄ peut être évalué à partir des pentes des tangentes aux courbes $\chi_m^{-1} = f(T)$ tracées à 4 K. Les valeurs observées correspondent à des constantes de Curie, respectivement, égales à 1.3 environ pour Na₄MnO₄ et à 0.8 pour K₄MnO₄, ce qui conduit dans le premier cas à 40% d'ions Mn^{IV} et dans le second à 70%, aux erreurs expérimentales près.

Ce résultat pourrait s'expliquer par l'existence à l'intérieur du site tétraédrique de liaisons Mn–O covalentes analogues à celles que l'on rencontre dans les permanganates MnO_4^- , les manganates MnO_4^{2-} , ou les hypomanganates MnO_4^{3-} . A partir des spectres optiques de ces divers groupements on peut estimer la valeur du paramètre de champ de ligandes Δ pour MnO_4^{4-} à 10 000 cm⁻¹ environ, valeur généralement suffisammentélevée d'après Goodenough pour entraîner une configuration à spin faible (11). Cette hypothèse demanderait cependant à être confirmée par des mesures d'absorption optique à très basse température sur monocristal.

C. La Phase Na₄CoO₄

(a) Propriétés magnétiques. Na₄CoO₄ est antiferromagnétique avec une température de Nécl égale à 20 K (Fig. 6). La valeur de la constante de Curie mesurée est en bon accord avec celle calculée dans l'hypothèse de la seule contribution de spin pour une configuration à spin fort (Tableau VIII). Ce résultat est à rapprocher de celui obtenu par Candela, Kahn, et Negas pour la phase Ba₂CoO₄ de structure K₂SO₄ β : dans tout le domaine de température étudié l'ion Co⁴⁺ a une configuration d^5 à spin fort (12).

IV. Conclusions

Les phases Na₄XO₄ isotypes (X = Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) et K₄XO₄ (X = Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb) cristallisent dans le système triclinique. L'étude simultanée des propriétés optiques et magnétiques qui ne peut être réalisée que lorsque X est au moins partiellement un élément de transition (X = Cr, Mn, Co) indique sans ambiguité que celui-ci occupe un site tétraédrique. On peut penser que, lorsqu'on passe du silicium au plomb, ce tétraèdre subit une déformation progressive et importante vers une coordinence plus élevée.

Remerciements

Nous remercions M. le Professeur R. Georges de l'Université de Bordeaux I, et M. le Professeur M. Tournoux de l'Université de Nantes avec qui nous avons eu de fructueuses discussions.

TABLEAU VIIII

	C_{calcd}	C_{mes}	p_{calcd} (μ_{B})	$p_{exp}(\mu_{\rm B})$	$T_N(\mathbf{K})$	$\theta_{p}(\mathbf{K})$
Na ₄ CoO ₄	4.375	4.33	5.92	5.80	20	-85
Ba ₂ CoO ₄	4.375	4.00	5.92	5.66	10	-90

Références

- 1. R. SCHOLDER, Angew. Chem. 19, 583 (1958).
- 2. K. KAUTZ, G. MÜLLER, ET W. SCHNEIDER, Glas. Ber. 43, 377 (1970).
- M. G. BARKER ET D. J. WOOD, 7th International Symposium on the reactivity of solids, Bristol, 17-21 juillet, 8-5 (1972).
- 4. L. LAVIELLE, H. KESSLER, ET A. HATTERER, Bull. Soc. Chim. France 6, 1918 (1973).
- 5. J. CLAVERIE, C. FOUASSIER, ET P. HAGENMULLER, Bull. Soc. Chim. Franc. 1, 244 (1966).

- 6. M. DEVALETTE ET P. HAGENMULLER, Bull. Soc. Chim. Franc. 9, 3457 (1967).
- 7. M. TOURNOUX, Communication privée.
- 8. J. MILSTEIN, Thése de Doctorat, Université de Michigan (1970).
- 9. C. SIMO, E. BANKS, ET S. L. HOLT, *Inorg. Chem.* 9, 183 (1970).
- 10. A. ABRAGAM, ET M. H. L. PRICE, Proc. Roy. Soc. (Londres) A205, 135 (1951).
- 11. J. B. GOODENOUGH, "Magnetism and the Chemical bond," p. 50. Interscience, New York (1963).
- 12. G. A. CANDELA, A. H. KAHN, ET T. NEGAS, J. Solid State Chem., 7, 360 (1973).